Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis.

نویسندگان

  • Wei Sun
  • Antonella Motta
  • Yang Shi
  • Andreas Seekamp
  • Harald Schmidt
  • Stanislav N Gorb
  • Claudio Migliaresi
  • Sabine Fuchs
چکیده

Sufficient vascularization of the implant construct is required for tissue regeneration to ensure the supply of oxygen and nutrients. In our previous work, we established sonication-induced silk fibroin hydrogel to load neural stem cells for brain tissue engineering applications. In this study, we explored the application of silk fibroin as an injectable hydrogel for vascularization of soft tissues. We investigated the ability of outgrowth endothelial cells (OECs) in mono-culture or in co-culture with human bone marrow-derived mesenchymal stem cells (BM-MSCs) to form capillary networks in silk fibroin hydrogels. Furthermore, the silk fibroin hydrogel was modified with IKVAV peptide revealing a sequence derived from the extracellular matrix component laminin-1 to test its effects on angiogenesis, using unmodified and VVIAK modified silk fibroin hydrogel as controls. In monocultures of OECs, no angiogenic structures were observed in silk fibroin hydrogels. In contrast, vascular structures were abundant and increased in co-culture, as confirmed by immunocytochemistry and scanning electron microscopy (SEM) over 10 d of culture in silk fibroin-based hydrogels. Although no significant differences in angiogenic activity seem to be caused by the IKVAV peptide in our experimental settings, these results indicate that sonication-induced silk fibroin-based hydrogels support the formation of functional endothelial tubes and vascularization networks in the presence of mesenchymal cells supporting the vascular sprouting of endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel's properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose...

متن کامل

Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering

BACKGROUND In this study, silk fibroin (SF) composite hydrogels containing hydroxyapatite (HAP) nanoparticles (NPs) for bone tissue engineering were fabricated using gamma-ray (γ-ray) irradiation treatment. During the irradiation, the HAP dispersed SF solution was changed to the chemically crosslinked SF hydrogel. METHODS Distribution of HAP NPs in the SF hydrogel was examined by SEM imagery ...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016